首页 > 电脑 > Python如何图像识别?

Python如何图像识别?

电脑 2022-07-01

如何学习python 图像识别

图像识别技术可以用来解决人脸识别或字符识别等多种问题。 在本文中,我将对算法进行实际编码来演示识别手写字,特别是手写的数字。我将会使用Python以及Python的许多模块,比如numpy、PIL等。 1 #从PIL库中导入Image

Python深度学习之图像识别

作者 | 周伟能

来源 | 小叮当讲SAS和Python

Python在机器学习(人工智能,AI)方面有着很大的优势。谈到人工智能,一般也会谈到其实现的语言Python。前面有几讲也是关于机器学习在图像识别中的应用。今天再来讲一个关于运用google的深度学习框架tensorflow和keras进行训练深度神经网络,并对未知图像进行预测。

导入python模块

导入图像数据

合并列表数据

将图片数据转化为数组

显示一张图片

训练神经网络

我们可以看到测试集的准确率达到99.67%

预测一个图像

预测为汽车的概率为100%。(括号内为真实标签)

预测为美女的概率为100%。(括号内为真实标签)

测试集中前15个图像预测完全正确。Nice!

最后我们来识别单张图片。

结果预测为汽车。Nice!

最后来预测一下外部随便下载的汽车或美女图片

预测为汽车,不错!

小编这里有10张图片,前5张为汽车图片,后五张为美女图片。

下面进行批量预测:

结果也是完全正确。

看到这里,感觉神经网络是不是很神奇,要想让神经网络预测得准确,我们就必须给予大量的数据进行训练模型,优化模型,以至于达到准确识别图像的目的,图像识别作为人工智能的一部分,现在已经慢慢走向成熟,虽然机器也有出错的时候,但是进过不断优化,错误率将会越来越小,相信机器智能或者人工智能时代能够创造出更多智能而美好的东西。为社会,为人类的自由做出更大的贡献。

如何python pil开发图像识别

1. 简介。

图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以在这里下载学习和查找资料。

Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。

2. 使用。

导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:

1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB

这里有三个属性,我们逐一了解。

format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。

size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。

mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。

现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:

1 >>>im.show()
2 >>>

输出原图:

3. 函数概貌。

3.1 Reading and Writing Images : open( infilename ) , save( outfilename )

3.2 Cutting and Pasting and Merging Images :

crop() : 从图像中提取出某个矩形大小的图像。它接收一个四元素的元组作为参数,各元素为(left, upper, right, lower),坐标系统的原点(0, 0)是左上角。

paste() :

merge() :

1 >>> box = (100, 100, 200, 200)
2 >>> region = im.crop(box)
3 >>> region.show()
4 >>> region = region.transpose(Image.ROTATE_180)
5 >>> region.show()
6 >>> im.paste(region, box)
7 >>> im.show()

其效果图为:

旋转一幅图片:

1 def roll(image, delta):
2 "Roll an image sideways"
3
4 xsize, ysize = image.size
5
6 delta = delta % xsize
7 if delta == 0: return image
8
9 part1 = image.crop((0, 0, delta, ysize))
10 part2 = image.crop((delta, 0, xsize, ysize))
11 image.paste(part2, (0, 0, xsize-delta, ysize))
12 image.paste(part1, (xsize-delta, 0, xsize, ysize))
13
14 return image

3.3 几何变换。

3.3.1 简单的几何变换。

1 >>>out = im.resize((128, 128)) #
2 >>>out = im.rotate(45) #逆时针旋转 45 度角。
3 >>>out = im.transpose(Image.FLIP_LEFT_RIGHT) #左右对换。
4 >>>out = im.transpose(Image.FLIP_TOP_BOTTOM) #上下对换。
5 >>>out = im.transpose(Image.ROTATE_90) #旋转 90 度角。
6 >>>out = im.transpose(Image.ROTATE_180) #旋转 180 度角。
7 >>>out = im.transpose(Image.ROTATE_270) #旋转 270 度角。

各个调整之后的图像为:

图片1:

图片2:

图片3:

图片4:

3.3.2 色彩空间变换。

convert() : 该函数可以用来将图像转换为不同色彩模式。

3.3.3 图像增强。

Filters : 在 ImageFilter 模块中可以使用 filter 函数来使用模块中一系列预定义的增强滤镜。

1 >>> import ImageFilter
2 >>> imfilter = im.filter(ImageFilter.DETAIL)
3 >>> imfilter.show()

3.4 序列图像。

即我们常见到的动态图,最常见的后缀为 .gif ,另外还有 FLI / FLC 。PIL 库对这种动画格式图也提供了一些基本的支持。当我们打开这类图像文件时,PIL 自动载入图像的第一帧。我们可以使用 seek 和 tell 方法在各帧之间移动。

1 import Image
2 im.seek(1) # skip to the second frame
3
4 try:
5 while 1:
6 im.seek( im.tell() + 1)
7 # do something to im
8 except EOFError:
9 pass

3.5 更多关于图像文件的读取。

最基本的方式:im = Image.open("filename")

类文件读取:fp = open("filename", "rb"); im = Image.open(fp)

字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))

从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)

基本的 PIL 目前就练习到这里。其他函数的功能可点击这里进一步阅读。

怎样使用Python图像处理

Python图像处理是一种简单易学,功能强大的解释型编程语言,它有简洁明了的语法,高效率的高层数据结构,能够简单而有效地实现面向对象编程,下文进行对Python图像处理进行说明。 当然,首先要感谢“恋花蝶”,是他的文章“用Python图像处理 ” 帮我坚定了用Python和PIL解决问题的想法,对于PIL的一些介绍和基本操作,可以看看这篇文章。我这里主要是介绍点我在使用过程中的经验。 PIL可以对图像的颜色进行转换,并支持诸如24位彩色、8位灰度图和二值图等模式,简单的转换可以通过Image.convert(mode)函数完 成,其中mode表示输出的颜色模式。例如''L''表示灰度,'

python处理图片数据?

生成一张纯色的图片

先设置图片的颜色,接着利用Image模块的new方法新生成一张图片,png格式的图片需要设置成rgba,类似的还有rgb,L(灰度图等),尺寸设定为640,480,这个可以根据自己的情况设定,颜色同样如此。

批量生成图片

上面生成了一张图片,那要生成十张图片呢,这种步骤一样,只是颜色改变的,利用循环就可以解决。首先创建一个颜色列表,把要生成的图片颜色放进去。接着循环获取不同的颜色,保存的时候利用字符串拼接的方法改变图片的名字。

本地生成的图片

封装成函数

前面的方法已经可以批量生成图片了,为了通用性强一点,我们可以封装成函数,把哪些可以改变的参数单独抽离出来。尺寸也同样,使用的时候,可以根据自己的需要定义颜色列表和尺寸。当然还有加一些提示用语和报错兼容性,这里就不讲了。

本地生成的图片


标签:python 信息技术 编程 学习 计算机

大明白知识网 Copyright © 2020-2022 www.wangpan131.com. Some Rights Reserved. 京ICP备11019930号-18