首页 > 电脑 > 目前有哪些较好的开源语音识别框架?语音识别的原理是怎么样的?

目前有哪些较好的开源语音识别框架?语音识别的原理是怎么样的?

电脑 2022-10-26

如何解释语音识别的技术原理?

语音识别,是人工智能的重要入口,越来越火。从京东科大讯飞合作的叮咚,亚马逊的明星产品Echo,到最近一个月谷歌Master和百度小度掀起的人机大战,赚够了眼球。但语音只是个入口,内容或者说引导用户做决策乃至消费,才是王道。.语音识别系统,分训练和解码两阶段。训练,即通过大量标注的语音数据训练声学模型,包括GMM-HMM、DNN-HMM和RNN+CTC等;解码,即通过声学模型和语言模型将训练集外的语音数据识别成文字。目前常用的开源工具有HTK Speech Recognition Toolkit,Kaldi ASR以及基于Tensorflow(speech-to-text-wavenet)实现端到端系统。我以古老而又经典的HTK为例,来阐述语音识别领域涉及到的概念及其原理。HTK提供了丰富的语音数据处理,以及训练和解码的工具。语音识别,分为孤立词和连续词语音识别系统。早期,1952年贝尔实验室和1962年IBM实现的都是孤立词(特定人的数字及个别英文单词)识别系统。连续词识别,因为不同人在不同的场景下会有不同的语气和停顿,很难确定词边界,切分的帧数也未必相同;而且识别结果,需要语言模型来进行打分后处理,得到合乎逻辑的结果。

语音识别系统的原理

语音识别系统是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元。未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。 然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。 语音识别系统构建过程整体上包括两大部分:训练和识别。训练通常是离线完成的,对预先收集好的海量语音、语言数据库进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;而识别过程通常是

语音识别的原理是什么?

目前,主流的大词汇量语音识别系统多采用统计模式识别技术。典型的基于统计模式识别方法的 语音识别系统由以下几个基本模块所构成 信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。 统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。 发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。 语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,

语音识别系统是什么原理??

  我们可以设想,在不久的将来坐在办公司里的经理会对电脑说:“嗨!伙计,帮我通知一下公司所有员工,今天下午3:00准时开会。”这是科学家在几十年前的设想,语音识别长久以来一直是人们的美好愿望,让计算机领会人所说的话,实现人机对话是发展人机通信的主要目标。进入2l世纪,随着计算机的日益普及,怎样给不熟悉计算机的人提供一个友好而又简易的操作平台,是我们非常感兴趣的问题,而语音识别技术就是其中最直接的方法之一。

  20世纪80年代中期以来,新技术的逐渐成熟和发展使语音识别技术有了实质性的进展,尤其是隐马尔可夫模型(HMM)的研究和广泛应用,推动了语音识别的迅速发展,同时,语音识别领域也正处在一个黄金开发的关键时期,各国的开发人员正在向特定人到非特定人,孤立词汇向连接词,小词汇量向大词汇量来扩展研究领域,可以毫不犹豫地说,语音识别会让计算机变得“善解人意”,许多事情将不再是“对牛弹琴”,最终用户的口述会取代鼠标,键盘这些传统输入设备,只需要用户的嘴和麦克风就能实现对计算机的绝对控制。

  1、隐马尔可夫模型HMM的引入

  现在假定HMM是一个输出符号序列的统计模型,具有N个状态S1,S2⋯Sn,在一个周期内从一个状态转到另一个状态,每次转移时输出一个符号,转移到了哪个状态以及输出什么符号,分别由状态转移概率和转移时的输出概率来决定,由于只能观测到输出符号序列,不能观测到状态转移序列,因此成为隐藏的马尔可夫模型。

  2、语音识别的特点

  语音识别的意思是将人说话的内容和意思转换为计算机可读的输入,例如按键、二进制编码或者字符序列等。与说话人的识别不同,后者主要是识别和确认发出语音的人而非其中所包含的内容。语音识别的目的就是让机器听懂人类口述的语言,包括了两方面的含义:第一是逐字逐句听懂而不是转化成书面的语言文字;第二是对作者简介:贾聪,中国地质大学机械与电子信息学院。口述语言中所包含的命令或请求加以领会,做出正确回应,而不仅仅只是拘泥于所有词汇的正确转换。

  3、语音识别系统的工作流程

  一般来说,一套完整的语音识别系统其工作过程分为7步:①对语音信号进行分析和处理,除去冗余信息。②提取影响语音识别的关键信息和表达语言含义的特征信息。③紧扣特征信息,用最小单元识别字词。④按照不同语言的各自语法,依照先后次序识别字词。⑤把前后意思当作辅助识别条件,有利于分析和识别。⑥按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。⑦结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正。

  4、音识别系统基本原理框图及原理

  语音识别系统基本原理结构如图1所示。语音识别原理有三点:①对语音信号中的语言信息编码是按照幅度谱的时间变化来进行;②由于语音是可以阅读的,也就是说声学信号可以在不考虑说话人说话传达的信息内容的前提下用多个具有区别性的、离散的符号来表示;③语音的交互是一个认知过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。

  预处理,其中就包括对语音信号进行采样、克服混叠滤波、去除部分由个体发音的差异和环境引起的噪声影响,此外还会考虑到语音识别基本单元的选取和端点检测问题。反复训练是在识别之前通过让说话人多次重复语音,从原始语音信号样本中去除冗余信息,保留关键信息,再按照一定规则对数据加以整理,构成模式库。再者是模式匹配,它是整个语音识别系统的核心部分,是根据一定规则以及计算输入特征与库存模式之间的相似度,进而判断出输入语音的意思。

  前端处理,先对原始语音信号进行处理,再进行特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征。

  5、当前亟待解决的问题

  语音识别系统的性能受到许多因素的影响,包括不同说话人的发音方式、说话方式、环境噪音、传输信道衰落等等。具体要解决的问题有四点:①增强系统的鲁棒性,也就是说如果条件状况变得与训练时很不相同,系统的性能下降不能是突变的。②增加系统的适应能力,系统要能稳定连续的适应条件的变化,因为说话人存在着年龄、性别、口音、语速、语音强度、发音习惯等方面的差异。所以,系统应该有能力排除掉这些差异。达到对语音的稳定识别。③寻求更好的语言模型,系统应该在语言模型中得到尽可能多的约束,从而解决由于词汇量增长所带来的影响。④进行动力学建模,语音识别系统提前假定片段和单词是相互独立的,但实际上词汇和音素的线索要求对反映了发声器官运动模型特点的整合。所以,应该进行动力学建模,从而将这些信息整合到语音识别系统中去。

  6、统的组成和分类

  根据识别的对象不同语音识别大致上可分为3类:对孤立词识别,对关键词识别和对连续语音识别。其中,孤立词识别的任务是识别事先已知的孤立的词;连续语音识别的任务则是识别任意的连续语音;连续语音流中的关键词检测针对的是连续语音,但它并不识别全③部文字,而只是检测已知的若干关键词在何处出现,根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。

  7、语音识别技术应用领域及前景展望

  语音识别技术借助飞速发展的高速信息网,可实现计算机的全球联网和信息资源共享,因此被广泛应用的系统有:语音输入和控制系统,语音拨号系统、智能家电及玩具,智能电话查询系统,数据库检索等方面,在咨询服务、教育等行业,正潜移默化地改变和便利着我们的生活。此外,语音识别系统还在多媒体手机、个人掌上电脑、车载导航器GPS等方面有着巨大的应用和市场前景。

  8、结语

  语音识别是非常有发展潜力的一门学科,你可以设想。我们平时生活中很多地方都可以用到它,可以大大便利我们的生活和工作,比如智能手机,智能空调及冰箱,电动门,汽车导航,机器人控制,医疗设施,军事设备等。可以毫不夸张的说,21世纪将会是语音识别广泛流行和普及的时代,而语音识别产品和设备也会以其独特的魅力引领时代潮流,成为时代追逐的宠儿和焦点。


语音识别系统的原理是什么?

根据语音识别实际应用中的不同,语音识别系统可以分为:特定人与非特定人的语音识别、独立词与连续词的语音识别、小词汇量与大词汇量以及无限词汇量的语音识别。但无论哪种语音识别系统,其基本原理和处理方法大体相同。语音识别原理语音信号输入之后,预处理和数字化是进行语音识别的前提条件。其中,预处理主要是进行预滤波,保留正常人的300~3400Hz的语音信号;数字化是要进行A/D转换及抗混叠等处理;特征提取是进行语音信号训练和识别必不可少的步骤。能够体现语音信号特征的参数包括:(1)基于LPC的倒谱参数;(2)Mel系数的倒谱参数;(3)采用前沿数字信号处理技术的特征分析手段,如小波分析、时/频域分析、人工

标签:计算机 原理 软件 语音识别 互联网

大明白知识网 Copyright © 2020-2022 www.wangpan131.com. Some Rights Reserved. 京ICP备11019930号-18