首页 > 软件 > 某一离散型的统计资料,变量值少、变化幅度小,适于作

某一离散型的统计资料,变量值少、变化幅度小,适于作

软件 2023-03-19

统计学离散型变量和连续型变量有什么区别?

两者的区别:

1、变量按其数值表现是否连续。

连续变量是一直叠加上去的,增长量可以划分为固定的单位,即:1,2,3…… 例如:一个人的身高,他首先长到1.51,然后才能长到1.52,1.53……。

而离散变量则是通过计数方式取得的,即是对所要统计的对象进行计数,增长量非固定的,如:一个地区的企业数目可以是今年只有一家,而第二年开了十家;一个企业的职工人数今年只有10人,第二年一次招聘了20人等。

2、变量值的变动幅度不同。

对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或人口数分组,均可采用单项式分组。

离散变量如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。

也就是说,离散变量根据情况既可用单项式分组,也可用组距式分组。在组距式分组中,相邻组既可以有确定的上下限,也可将相邻组的组限重叠。

扩展资料:

1、离散变量是指其数值只能用自然数或整数单位计算的则为离散变量。例如,企业个数、职工人数、设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得。

2、而连续变量是在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如,生产零件的规格尺寸、人体测量的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。

3、离散变量的概率分布,常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。

参考资料:百度百科-连续变量、百度百科-离散变量

统计学原理中统计分组遵循的原则是什么

科学的统计分组应遵循两个原则:

1、必须符合“穷尽原则”,就是使总体中的每一个单位都应有组可归,或者说各分组的空间足以容纳总体的所有单位。

2、必须遵守“互斥原则“,即总体任一单位都只能归属于一组,而不能同时或可能归属于几个组。

扩展资料:

统计分组的种类:

1、任务作用分组

类型分组的目的是划分经济类型,结构分类的目的是研究同质总体的构成,分析分组的目的是研究现象总体内部诸标志间的依从和制约关系。

2、分组标志分组

简单分组是将总体按一个标志进行分组,复合分组是将总体按两个或两个以上的标志重叠起来进行分组。

3、性质分组

品质分组是将总体按品质标志进行分组,如企业按经济成份、地理位置分组,职工按性别、文化程度分组等;变量分组是将总体按数量标志进行分组,如企业按职工人数、劳动生产率分组,职工按工龄、工资分组等。

参考资料来源:百度百科-统计分组

求助,统计学的选择题

选择B统计分组按分组标志的多少分为简单分组和复合分组。统计分组按分组标志的性质分为品质分组和变量分组。对于品质标志分组,当分组标志一旦确定,组名称和组数就确定,不存在组与组之间的界限区分的困难。对于数量标志分组,有单项式分组与组距式分组之别。离散型变量如果变动幅度小,分组可以是单项式的,如果变动幅度很大,分组应该用组距式分组。而连续型标志变量由于无法逐一列举其数值,其分组只能是组距式分组。组距分组通常有等距分组和不等距分组两种。等距分组即标志变量在各组保持相等组距;反之,称为不等距分组。在分组标志变更比较均匀的情况下适用等距分组。标志变异差急剧增长或下降时,就应按不等距分组。在不等距数列中,各

统计分组的分组种类

统计分组根据分组标志的性质,分为按品质标志分组和按数量标志分组。
品质标志上是说明事物的性质或属性特征的,它反映的是总体单位在性质上的差异,它不能用数值来表现。数量标志是直接反映事物的数量特征的,它反映的是事物在数量上的差异。如人口的年龄、企业的产值等。统计分组方法就是指这两种标志的具体分组方法。 单项式分组和组距式分组
对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或人口数分组,均可采用单项式分组。
离散变量如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。
也就是说,离散变量根据情况既可用单项式分组,也可用组距式分组。在组距式分组中,相邻组既可以有确定的上下限,也可将相邻组的组限重叠。
连续变量由于不能一一列举其变量值,只能采用组距式的分组方式,且相邻的组限必须重叠。如以总产值、商品销售额、劳动生产率、工资等为标志进行分组,就只能是相邻组限重叠的组距式分组。
在相邻组组限重叠的组距式分组中,若某单位的标志值正好等于相邻两组的上下限的数值时,一般把此值归并到作为下限的那一组(适用于连续变量和离散变量)。
组距式分组使资料的真实性受到一定程度的损害。组距式分组的假定条件是:变量在各组内的分布都是均匀的(即各组标志值呈线性变化)。
通过组距式分组以后,把各组内部各单位的次要差异抽象去了,而把各组之间的主要差异突出出来,这样,各组分配的规律性可以更容易显示出来。根据这个道理,如组距太小,分组过细,容易将属于同类的单位划分到不同的组,因而显示不出现象类型的特点;但如果组距太大,组数太少,会把不同性质的单位归并到同一组中,失去区分事物的界限,达不到正确反映客观事实的目的。因此,组距的大小、组数的确定应根据研究对象的经济内容和标志值的分散程度等因素,不可强求一致。 等距分组是各组保持相等的组距,也就是说各组标志值的变动都限于相同的范围。不等距分组即各组组距不相等的分组。
统计分组时采用等距分组还是不等距分组,取决于研究对象的性质特点。在标志值变动比较均匀的情况下宜采用等距分组。等距分组便于各组单位数和标志值直接比较,也便于计算各项综合指标。在标志值变动很不均匀的情况下宜采用不等距分组。不等距分组有时更能说明现象的本质特征。 组距两端的数值称组限。其中,每组的起点数值称为下限,每组的终点数值称为上限。上限和下限的差称组距,表示各组标志值变动的范围。
组中值是上下限之间的中点数值,以代表各组标志值的一般水平。组中值并不是各组标志值的平均数,各组标志数的平均数在统计分组后很难计算出来,就常以组中值近似代替。组中值仅存在于组距式分组数列中,单项式分组中不存在组中值。
组中值的计算是有假定条件的,即假定各组标志值的变化是均匀的(与组距式分组的假定条件相同)。一般情况下,组中值=(上限+下限)÷2
对于第一组是 “多少以下”,最后一组是“多少以上”的开口组,组中值的计算可参照邻组的组距来决定。即:缺下限开口组组中值=上限—1/2邻组组距,缺上限开口组组中值=下限+1/2邻组组距。

描述数值变量资料的离散程度的指标有哪些,有何适用条件

统计描述是用统计指标、统计图或统计表描述资料的分布规律及其数量特征。 频数表是统计描述中经常使用的基本工具之一。 1.频数表(frequency table)的编制 在观察值个数较多时,为了解一组同质观察值的分布规律和便于指标的计算,可编制频数分布表,简称频数表。 (1)求全距(range):找出观察值中的最大值与最小值,其差值即为全距(或极差),用R表示。 (2)确定组段和组距:根据样本含量的大小确定“组段”数,一般设8-15个组段,观察单位较少时组段数可相对少些,观察单位较多时组段数可相对多些,常用全距的1/10取整做组距,以便于汇总和计算。第一组段应包括全部观察值中的最小值,最

标签:统计学 高等教育 数学 网络 信息技术

大明白知识网 Copyright © 2020-2022 www.wangpan131.com. Some Rights Reserved. 京ICP备11019930号-18