首页 > 电脑 > 单制粉运行跟双制粉运行生成量对比

单制粉运行跟双制粉运行生成量对比

电脑 2023-08-23

和制粉系统有关的系数

制粉系统有关艺术:漏风系数每增加0.01,排烟温度升高约1.25℃,二者基本为线性关系。 一、磨煤机入口负压的调节与控制 磨煤机入口保持负压运行的目的和意义: 在于使整个磨煤机和制粉系统处于负压状态,防止煤粉外喷和磨煤机过大的漏风量。一般要求维持在-200~-400Pa。负压过小会造成煤粉外喷,既污染了环境,又使煤粉易进入磨煤机轴颈,污染油质损坏轴瓦。负压过大会使制粉系统漏风量增大,制粉系统漏风系数每增加0.01,排烟温度升高约1.25℃,二者基本为线性关系。 磨煤机入口负压的调节: 磨煤机入口负压的调节是靠正压侧风门‍(热风门、压力冷风门、自然冷风门、再循环风门)和负压侧风门(排粉机入口挡板

燃煤锅炉NOx排放建模及优化研究?


以超临界燃煤锅炉为研究对象,应用人工神经网络对其建立NOX排放模型。该模型具有较高的准确性,仿真平均误差为1.37%,真实值与仿真值吻合度高。结合遗传算法对模型进行优化,优化后的人工神经网络性能进一步提高,仿真平均误差为0.18%,较优化前降低1.19百分点。
优化前的第9个训练样本出现最大误差4.61%,优化后降低到0.85%。校验数据样本值跨度较大,证明模型的泛化能力较强。
目前,燃煤电站污染物排放备受关注,从《火电厂大气污染物排放标准》(GB13223—2011)的出台[1],到如今提出的燃煤电站大气污染物超低排放,均规定NOX,SO2和粉尘的排放限值分别为50、35、10mg/m3(中东部地区为5mg/m3),因而燃煤电站锅炉需要更加高效低污染地运行。
国内大部分燃煤电站通过加装选择性催化还原法SCR脱硝设备控制NOX排放浓度,然而为了减少氨逃逸所带的问题,SCR脱硝效率一般设计为不高于90%[2]。因此,要达到超低排放限值,炉内燃烧优化非常重要。随着计算机领域的快速发展,人工神经网络开始逐渐应用到燃煤电站锅炉控制系统[3-5]。
电站锅炉炉内燃烧非常复杂,特别是NOX的生成机制,至今没有函数映射能够准确描述,人工神经网络在处理复杂的非线性映射问题优势明显,精确度好,泛化能力强,容错率高,是能够广泛应用的黑箱模型。应用人工神经网络则不需要考虑复杂的燃烧过程和NOX生成机制,通过可靠的数据样本作为输入和输出进行学习,保证网络的性能要求[6-7]。
部分学者在神经网络应用于锅炉燃烧优化领域已有一些研究成果。BOOTH等[8]从降低NOX排放浓度入手,建立锅炉NOX排放模型,对其运行参数进行优化,优化后的锅炉NOX排放量降低了16%,锅炉效率提高了0.3%。王斌忠等[9]在研究锅炉灰渣结渣中采用了SVM模型预测其生成。
周昊等[10][11]对某30万机组的锅炉飞灰含碳量和污染物排放建立了BP神经网络模型。董文波以某电厂锅炉为原型,应用RBF神经网络建立了锅炉主蒸汽温度监控系统,在常见PID基础上,创建了RBF网络的PID控制器。以上研究在控制优化方面有很多独到的见解,但在模型建立上较为单一,本研究在建立锅炉NOX排放神经网络模型的基础上,应用遗传算法对模型进行优化,使网络的性能大大提高。
1研究对象
本文研究对象为某发电公司660MW超临界参数变压直流锅炉,BMCR工况下主蒸汽参数为2060t/h、26.15Mpa、605℃,为一次再热、变压直流、单炉膛、固态排渣、全悬吊结构Ⅱ型锅炉。制粉系统为中速磨煤机直吹式正压冷一次风制粉系统,运行设计煤种,每炉配6台磨煤机,1台备用。采用前后墙对冲燃烧,燃烧器布置3层,每层前后墙各6只低氮旋流燃烧器。
2BP神经网络建模
BP神经网络是少有的误差信号反向传递,含有多个隐含层的前馈神经网络。外界信号通过输入层传递给中间隐含层,这是BP神经网络的核心计算处,信号在此处理完后传递至输出层,并判断是否满足输出误差,进而决定完成训练还是反馈误差继续训练。不断调整各层之间的权值和阈值,当误差范围满足要求时,网络完成训练[12-13]。
2.1模型建立
本研究的电站锅炉已经投运,炉型、燃烧方式和其他主要设备一般不会改变。在电厂经常运行的负荷和煤种下,氧量对NOX生成影响较大,因此将各个二次风门开度作为输入来反映氧量对NOX生成量的影响。5台磨煤机的给粉反映了煤粉量对NOX生成的影响,炉膛与风箱压差描述风速的影响,经研究燃尽风能够影响NOX的生成量,因此将两个燃尽风口开度也作为输入参数,总计14个输入参数,输出为NOX排放浓度。建模实验数据见表1。
表1建模实验数据
BP神经网络的sigmod传递函数要求数据区间为[0,1]或[-1,1],因此在训练之前对数据样本进行归一化处理,在输出的结果中再对输出数据进行返归一化处理。
本研究采用含有1个隐含层的3层BP神经网络结构对锅炉进行排放特性建模,其中输入层网络的神经元节点为14个,输出层节点为1个,隐含层节点16个,各层之间通过log-sigmoid函数连接,学习效率取0.8。对热态试验的每个工况取18个训练样本数据用于网络训练学习,3个校验样本数据用来测试网络的性能,当训练均方误差小于0.001时结束训练。再结合遗传算法优化网络初始权值和阈值,比较网络优化前后的性能差异。
2.2建模结果
由图1可以看出,训练真实值与神经网络仿真值比较吻合,大部分工况都能很好的模拟,仿真平均误差为1.37%,其中最大相对误差出现在训练样本9,最大相对误差为4.61%。
图 1 模型仿真
3个校验样本的相对误差分别为0.46%、0.59%、2.34%,一般省煤器出口NOX排放值大约在400mg/m3,仿真误差完全可以满足电厂运行的需要。NOX排放神经网络模型的3个校验数据相差比较大,但神经网络模型的仿真误差很小,证明神经网络模型的泛化能力很强。
3网络优化
遗传算法是基于环境抉择和生物繁衍行为中演化而成的优化方法,运用仿生技术解决实际问题,借助遗传学中的基因重组、基因变异产生适应度高的新个体,通过多代的遗传,最终得到最优结果。在锅炉NOX排放神经网络模型基础上,结合遗传算法对模型进行优化,优化后网络性能更佳。本研究以网络权值和阈值作为目标函数,初始种群数为35,交叉概率为0.4,变异概率为0.2,设置进化代数为100代,图2为适应度曲线。
图2适应度曲线
优化结果如图3所示。由图3可看出,优化后的模型精确度更高,平均仿真误差为0.18%,训练样本9的误差在优化后降低到了0.85%。3个校验样本的相对误差分别为0.39%、0.51%、0.80%,平均仿真误差为0.57%。
图3优化后的模型仿真
对BP神经网络进行线性回归分析,结果表明训练数据的线性回归分析基本准确,测试数据线性回归稍有偏差,整个网络大部分数据基本能够保持较小误差的仿真模拟,也有部分数据点分布在直线两侧,在可接受范围内。优化结果表明,遗传算法优化BP神经网络是有效的,能够提高网络的精确性,泛化能力。
表2模型性能对比
4结论
(1)对某660MW超临界锅炉的NOX排放特性建立了BP神经网络模型,模型的平均仿真误差为1.37%,校验样本平均相对误差为1.13%,证明网络精确度较高,基本可以满足电站运行需要。
(2)结合遗传算法,对所建立的BP神经网络NOX排放模型进行优化,优化后的平均仿真误差为0.18%,较优化前有所降低,校验样本的数据跨度较大,但仿真误差小,证明模型的泛化能力强。结果表明,遗传算法优化神经网络能够提高其性能。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

循环流化床锅炉的石灰石系统

发展低碳经济已成为全球性共识,我国已把发展低碳经济,应对气候变化作为国家经济社会发展的重大战略,到2020年的行动目标,单位GDP的CO2排放强度比2005年下降40-50%。在实现这一目标的过程中,电力行业,尤其是火力发电领域承担着及其重要的责任。
当前,我国清洁煤发电技术和装备有了巨大的进步,大容量CFB锅炉技术已臻于成熟,300MW等级CFB锅炉在国内已全面普及,600MW等级机组已经开始研究并已实施。为了满足脱硫环保的要求,CFB机组的运行石需要掺烧石灰石粉,进入膛内的石灰石粉品质,粒径及级配,石灰石粉量等都有严格的要求,石灰石粉一旦达不到要求,就会影响炉内脱硫的效果,甚至影响其它系统。
目前国内CFB很多电厂石灰石粉直播系统的运行还不够理想,其中最重要的原因之一就是粉碎设备,尤其是细碎设备的设计和选型不当,因此做好石灰石粉细碎设备系统的设计,是一项非常迫切和重要的工作。
1、粉碎的基本概念,方式和原则
1.1粉碎的基本概念
固体物料在外力作用下克服其内聚力使之破碎的过程称为粉碎。因处理物料的尺寸大小不同,可大致分为破碎和粉磨两个过程:使大块物料碎裂成小块物料的加工过程称之为破碎;使小块物料碎裂成细粉末状物料的加工过程称为粉磨。
1.2粉碎的方式
基本的粉碎方式有:挤压粉碎,冲击粉碎,摩擦剪切粉碎和劈裂粉碎等,如下图:
粉碎方式 机理 典型设备 挤压粉碎 工作部件对物料施加挤压作用,物料在压力作用下发生粉碎。 颚式破碎机 挤压-剪切粉碎 物料在挤压和剪切两种作用力下发生粉碎。 柱磨,雷蒙磨,钢球磨,立磨,棒磨 劈裂粉碎 对物料在工作部件的劈裂作用下而粉碎 冲旋破碎机 冲击粉碎 工作部件高速运动对物料进行冲击或者物料高速运动向固定壁冲击而发生粉碎。 锤式破碎机 1.3粉碎的基本原则
对于物料的粉碎,经过大量理论研究和运行实践证明,存在一个破碎和粉磨最佳经济点即至某一粒度以上宜采用破碎,至某一粒度以下宜采用粉磨,也就是常说的分段破碎原则。破碎机运行时,破碎用的锤头或者刀具处于高速运动状态,通过撞击或者切削的作用力方式,更适合将大块的原料破碎成为较粗的物料;磨机运行时,速度相对慢得多,通过较为笨重的碾辊等大质量金属件碾磨挤压物料,更适合将小块物料进一步粉碎,有利于制备系统的节能,提高经济性。部分学者通过研究得出自己的研究结果:①诺尔斯及法栾特从碎矿和磨矿能耗降低的角度出发,用邦德公式计算结果作图,得出碎至12.7mm交给磨矿时能耗最低。②前苏联研究者从碎磨成本最低的角度出发测算出大型选厂碎矿最终粒度4-8mm最好,小型选厂最终10-15mm.。
综合下来,目前国内物料粉碎基本可按以下粒度选择粉碎设备型式:
2、CFB机组石灰石粉出力及粒度级配的需求
2.1石灰石粉耗量要求
CFB机组的石灰石耗量主要与以下3个因素有关:①煤质中的含硫量,②机组的容量,③烟气排放标准。我国的煤质硫分偏高,单位发热量低,随着烟气排放标准越来越高,所需石灰石耗量也越来越大。
2.2粒度,级配要求
CFB机组对石灰石粒度,级配有着严格的要求。掺烧的石灰石粉偏粗时,石灰石粉在炉膛内反应的表面积不足,会导致脱硫效率偏低;掺烧的石灰石粉偏细时,石灰石粉会因为在膛内停留的时间过短,也会导致脱硫效率偏低。现代阶段CFB机组要求石灰石成品粉粒径小于等于1mm,下图是某工程炉内要求的石灰石粉粒度级配曲线::
3、石灰石粉碎设备的选择
电厂购买的石灰石原料,往往都是矿山初步破碎后的石灰石原料,电厂石灰石制备系统设计时,可根据原料进厂粒度,按照分段破碎的原则,选择采用破碎+磨制或者直接采用磨制的方式。
3.1石灰石的粗碎
石灰石原料进厂粒度一般在100mm左右,经过粗碎机破碎后粒度要求在30mm以下,相对容易实现,一般采用国产破碎机即可。
3.2石灰石的细碎
根据CFB锅炉厂要求,石灰石成品粉粒径小于等于1mm,宜采用粉磨方式制备,也有个别厂家采用进口破碎机。
以下是国内电厂常用的粉磨设备: 序号 磨机种类 出料粒径范围 备注 1 钢球磨 ≤0.075mm 偏小 2 棒磨 0~4mm   3 雷蒙磨 0.15~0.01mm 偏小 4 深湘柱磨机 0~2mm   5 冲旋式破碎机 0~2mm   6 齿辊式破碎机 0~5mm 美国钢莱克 7 锤式破碎机 0~5mm 德国奥贝玛 CFB机组要求石灰石粒径在0—1mm这个区间,这个区间的粒度和粒度分布要求实际是难以达到的。
国外绝大多数破碎机公司包括美国钢莱克机械制造有限公司、德国的FAM、美国宾夕法尼亚州破碎机公司、美国破碎机公司、德国奥贝玛破碎技术有限公司等,现在一般都不做这种粒度的破碎,国内用过破碎机的经验告诉我们,实际上运行效果也很难以保证成品粉的粒径要求,如安徽淮北临焕电厂等,采用美国钢莱克破碎机,设计要求1mm,但实际运行平均粒径是3mm,最大粒径5mm;德国奥贝玛公司采用破碎机加机械筛分的闭式系统,后面介绍对比情况。
钢球磨是制粉系统常用的设备之一,可靠性较高,出力大。但是它的出料粒径偏细,控制手段少,不能满足设计要求,另外他耗电量较大,噪音大、粉尘污染较大,设备价格也较高。
雷蒙磨达不到这个级配要求,另外出力也较小,不适宜用于大型CFB机组石灰石粉制备。
棒磨机磨石灰石粉通常是在传统的棒磨机的基础上增加了选粉系统。由于制造等方面的原因,其筛板的制造还达不到原设计要求,带来的问题是出力下降,可靠性降低。同时,他的出力也较小(20t/h),耗电量较大,噪音大、粉尘污染也比较大、设备价格较高。
冲旋式破碎机是国内近几年来开发的一种新型破碎机,但虽然它具有破碎性能好、体积小、电耗低等特点,但冲旋式破碎机刀片磨损很快,使用寿命大约500h,更换频率高,维护量大,另外出力也较小(20t/h),不能满足设计要求。
柱磨机是在石灰石粉破碎上普遍采取的一种磨机,采用反复滚压原理生产石灰石粉,具有产量高、噪音小、磨损小、耗电量低、控制调节手段较多等优点,尤其是易损件辊轮由耐磨合金铸铁经过特殊热处理生产的,其使用寿命时间长,衬板为2年,辊轮3年。另外可以调节转速、碾辊与衬板的间隙、下料筒高度等方式来控制出料的粒径,技术性能指标(加上后续闭式系统)是目前各种细碎设备里最接近设计要求的(后面介绍测试数据)。
综合对比下来,柱磨机占有明显的优势,推荐采用柱磨机。
3.3锤式破碎机和柱磨机系统的试验测试
为切实做好石灰石粉碎设备的选型工作,我们对全国范围内采用石灰石粉制备电厂进行了广泛的调研,在此基础上对四川白马300CFBMW电厂和云南巡检司电厂的石灰石粉制备系统开展了重点调研、测试试验和分析工作。白马电厂300MW CFB机组石灰石制备采用的是两级破碎机+机械筛分系统的闭式系统,二级破碎机德国奥贝玛锤击式破碎机;云南巡检司电厂2*300MW CFB机组石灰石粉制备采用的是一级破碎机+柱磨机+气力风选系统的闭式系统。经测试国网白马电厂石灰石制备,设计出力65t/h,实际出力30t/h;华电云南巡检司电厂石灰石制备,设计出力50t/h,实际出力50t/h.
根据试验测试的结果,柱磨机系统在出力和级配方面数据明显优于锤击式破碎机系统,更能满足大型CFB机组的要求。
3.4白马电厂石灰石粉制备系统的应用
白马600MW CFB工程为1*600机组,石灰石粉耗量为85.94t/h,石灰石入厂粒径《=30mm,要求成品粉粒径《=1mm。安工程需要,设置3套50t/h制备系统。设计时,按两级破碎机和柱磨机两个方案拟定,两种方案经济比较如下: 项目 两级破碎(二级采用进口设备) 柱磨机 备注 初投资 3*400万 3*218   运行费 3*91.7 3*69.5   维护费 3*135 3*40   经济性上来看,柱磨机占有明显的优势。
白马电厂最终采用柱磨机方案。
结论
综上所述,CFB机组石灰石粉碎系统设计和设备的选择推荐原则如下:
1, 应遵循分级粉碎原则,粗碎采用破碎机,细碎采用柱磨机。
2, 当石灰石来料粒度《=30mm时,可直接采用磨机。
3, 石灰石粉的细碎设备推荐采用柱磨机。
参考文献
[1]谢洪勇,刘志军。粉体力学与工程,2007,7.
[2]陶珍东,郑少华。粉体工程与设备,2010,2.
[3]陈建斌,罗明鑫。石灰石制备系统收资报告,2006,11.
[4] 杨爱丽,胡学武。循环流化床锅炉岛石灰石制粉系统的设备配置及设计优化,2003,10.
参考设备
[1]长沙深湘通用机器有限公司
作者简介:
易礼容(1968.3-),男,最高学历本科,高级工程师,从事于电力行业除灰渣系统技术研究、设计工作。
王仕能(1979.1-),男,最高学历本科,工程师,从事于电力行业除灰渣系统技术研究、设计工作。
许华(1962.12-),男,最高学历本科,教授级高级工程师,从事于电力行业除灰渣系统技术研究、设计工作

关于燃煤锅炉 工作原理

锅炉工作原理:
锅炉就是利用水的比重不同,把里面的水加热后,由于热水比重小会升到上部,而热水加热后变冷后比重变大,就会下沉,
然后再通过锅炉的加热室把里面的凉水加热,水的温度就会上升,这样热水上升就会进入家里的暖气片中,然后进行散热,散热后凉水就会重新流到锅炉的加热室里从而进行来加热。
家用锅炉循环泵的工作原理:家用的取暖锅炉在使用时,首先要接通电源,然后再对温控系统进行调温,并将探头吸在铁管或锅炉上,最后再将锅炉点火升温,
当水温达到设定温度后温控灯亮起,水泵就会启动并工作,当温度低于设定的温度时,锅炉循环泵就会停止工作。

求助 煤炭知识

1.不同的炉子用不同的煤种,用不符合电厂炉子设计的煤会造成燃烧不允分,严重的有可能造成炉子熄火.所以必须校核煤种. 2、通常说提高煤粉细度是使煤粉变细,这样会使煤粉更容易着火、燃烧完全、飞灰含碳量降低、减少二次燃烧的可能性;同时炉膛火焰中心相对降低、炉效相对升高。但是提高煤粉细度,制粉系统的电耗增加,磨煤机内磨煤部件磨损增大(特别是钢球磨),增加维护量。所以对电厂而言,调试单位会根据设计煤种的可磨系数给出磨煤机正常运行中煤量和电流的参考值 3、炉子型号不同,对粘结指数也有要求,含胶高的话有可能把人家炉子粘住。 4、煤的硫份过高,排到空气中的硫也自然增多,会造成环保不合格,从而被环保部门罚款,而

标签:理工学科 产业信息 未分类 锅炉 机械加工

大明白知识网 Copyright © 2020-2022 www.wangpan131.com. Some Rights Reserved. 京ICP备11019930号-18