首页 > 软件 > python 判断图片是黑白还是彩色,并分到两个文件夹

python 判断图片是黑白还是彩色,并分到两个文件夹

软件 2023-03-29

如何用python将文件夹中图片根据颜色分类


本文实例讲述了Python通过PIL获取图片主要颜色并和颜色库进行对比的方法。分享给大家供大家参考。具体分析如下:

这段代码主要用来从图片提取其主要颜色,类似Goolge和Baidu的图片搜索时可以指定按照颜色搜索,所以我们先需要将每张图片的主要颜色提取出来,然后将颜色划分到与其最接近的颜色段上,然后就可以按照颜色搜索了。

在使用google或者baidu搜图的时候会发现有一个图片颜色选项,感觉非常有意思,有人可能会想这肯定是人为的去划分的,呵呵,有这种可能,但是估计人会累死,开个玩笑,当然是通过机器识别的,海量的图片只有机器识别才能做到。

那用python能不能实现这种功能呢?答案是:能

利用python的PIL模块的强大的图像处理功能就可以做到,下面上代码:

复制代码代码如下:

import colorsys
def get_dominant_color(image):
#颜色模式转换,以便输出rgb颜色值
image = image.convert('RGBA')
#生成缩略图,减少计算量,减小cpu压力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳过纯黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)
y = (y - 16.0) / (235 - 16)
# 忽略高亮色
if y > 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score > max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color


使用方法:

from PIL import Image
print get_dominant_color(Image.open('logo.jpg'))

这样就会返回一个rgb颜色,但是这个值是很精确的范围,那我们如何实现百度图片那样的色域呢??

其实方法很简单,r/g/b都是0-255的值,我们只要把这三个值分别划分相等的区间,然后组合,取近似值。例如:划分为0-127,和128-255,然后自由组合,可以出现八种组合,然后从中挑出比较有代表性的颜色即可。

当然我只是举一个例子,你也可以划分的更细,那样显示的颜色就会更准确~~大家赶快试试吧

有很多图片需要按横屏竖屏区分,怎么分到两个文件夹中?手机电脑都可以用。

在图片文件夹,点击更多,增加宽度或者高度,

只要规格一致大部分照片会排列在一起,还可以增加方向等等排列。

怎样利用Python进行图片分析

fromPILimportImage###此处为导出包,注意字母大小写
importos,os.path

#指明被遍历的文件夹
rootdir=os.path.abspath(os.curdir)+'/Image/'
rootdir1=os.path.abspath(os.pardir)+"/Image/"

#打包用
ifos.path.isdir(rootdir):
pass
else:
rootdir=rootdir1

size=315,560
i=0

forparent,dirnames,filenamesinos.walk(rootdir):
forfilenameinfilenames:
infile=os.path.join(parent,filename)
im=Image.open(infile)###此处Image.open(dir)为多数对象应用的基础.
im.thumbnail(size)###此处size为长度为2的tuple类型,改变图片分辨率
im.save(infile)###im.save(dir),图片处理的最后都用这个,就是保存处理过后的图片
i+=1
print(i,"Done")

要用pil包 安装如下:pipinstallpillow

Python如何图像识别?

1. 简介。

图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以在这里下载学习和查找资料。

Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。

2. 使用。

导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:

1 >>> import Image
2 >>> im = Image.open("j.jpg")
3 >>> print im.format, im.size, im.mode
4 JPEG (440, 330) RGB

这里有三个属性,我们逐一了解。

format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。

size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。

mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。

现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:

1 >>>im.show()
2 >>>

输出原图:

3. 函数概貌。

3.1 Reading and Writing Images : open( infilename ) , save( outfilename )

3.2 Cutting and Pasting and Merging Images :

crop() : 从图像中提取出某个矩形大小的图像。它接收一个四元素的元组作为参数,各元素为(left, upper, right, lower),坐标系统的原点(0, 0)是左上角。

paste() :

merge() :

1 >>> box = (100, 100, 200, 200)
2 >>> region = im.crop(box)
3 >>> region.show()
4 >>> region = region.transpose(Image.ROTATE_180)
5 >>> region.show()
6 >>> im.paste(region, box)
7 >>> im.show()

其效果图为:

旋转一幅图片:

1 def roll(image, delta):
2 "Roll an image sideways"
3
4 xsize, ysize = image.size
5
6 delta = delta % xsize
7 if delta == 0: return image
8
9 part1 = image.crop((0, 0, delta, ysize))
10 part2 = image.crop((delta, 0, xsize, ysize))
11 image.paste(part2, (0, 0, xsize-delta, ysize))
12 image.paste(part1, (xsize-delta, 0, xsize, ysize))
13
14 return image

3.3 几何变换。

3.3.1 简单的几何变换。

1 >>>out = im.resize((128, 128)) #
2 >>>out = im.rotate(45) #逆时针旋转 45 度角。
3 >>>out = im.transpose(Image.FLIP_LEFT_RIGHT) #左右对换。
4 >>>out = im.transpose(Image.FLIP_TOP_BOTTOM) #上下对换。
5 >>>out = im.transpose(Image.ROTATE_90) #旋转 90 度角。
6 >>>out = im.transpose(Image.ROTATE_180) #旋转 180 度角。
7 >>>out = im.transpose(Image.ROTATE_270) #旋转 270 度角。

各个调整之后的图像为:

图片1:

图片2:

图片3:

图片4:

3.3.2 色彩空间变换。

convert() : 该函数可以用来将图像转换为不同色彩模式。

3.3.3 图像增强。

Filters : 在 ImageFilter 模块中可以使用 filter 函数来使用模块中一系列预定义的增强滤镜。

1 >>> import ImageFilter
2 >>> imfilter = im.filter(ImageFilter.DETAIL)
3 >>> imfilter.show()

3.4 序列图像。

即我们常见到的动态图,最常见的后缀为 .gif ,另外还有 FLI / FLC 。PIL 库对这种动画格式图也提供了一些基本的支持。当我们打开这类图像文件时,PIL 自动载入图像的第一帧。我们可以使用 seek 和 tell 方法在各帧之间移动。

1 import Image
2 im.seek(1) # skip to the second frame
3
4 try:
5 while 1:
6 im.seek( im.tell() + 1)
7 # do something to im
8 except EOFError:
9 pass

3.5 更多关于图像文件的读取。

最基本的方式:im = Image.open("filename")

类文件读取:fp = open("filename", "rb"); im = Image.open(fp)

字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))

从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)

基本的 PIL 目前就练习到这里。其他函数的功能可点击这里进一步阅读。

python 根据关键词把一个文件夹里各个图片分类

python是当下十分火爆的编程语言,尤其在人工智能应用方面。如果有心从事编程方向的工作,最好到专业机构深入学习、多实践,更贴近市场,这样更有利于将来的发展。

标签:python 图片 编程 文件夹

大明白知识网 Copyright © 2020-2022 www.wangpan131.com. Some Rights Reserved. 京ICP备11019930号-18