首页 > 软件 > 有多少个二元运算是幂等的

有多少个二元运算是幂等的

软件 2022-07-03

数学中的幂等定理是什么

幂等定理是说一个四边形,对角线相连的话可以分为四个三角形,譬如说四边形ABCD对角线相交于点O,那么S△AOD*S△BOC=S△AOB*S△COD。

在某二元运算下,幂等元素是指被自己重复运算(或对于函数是为复合)的结果等于它自己的元素。例如,乘法下唯一两个幂等实数为0和1。

某一元运算为幂等的时,其作用在任一元素两次后会和其作用一次的结果相同。例如,高斯符号便是幂等的。

扩展资料

幂等运算也可以在布林代数内找到。逻辑和与逻辑或便都是幂等运算。

在线性代数里,投射是幂等的。亦即,每一将向量投射至一子空间V(不需正交)上的线性算子,都是幂等的。

一幂等半环为其加法(非乘法)为幂等的半环。

参考资料来源:百度百科-幂等

幂等定理是什么

幂等定理是说一个四边形,对角线相连的话可以分为四个三角形,譬如说四边形ABCD对角线相交于点O,那么S△AOD*S△BOC=S△AOB*S△COD。

在某二元运算下,幂等元素是指被自己重复运算(或对于函数是为复合)的结果等于它自己的元素。例如,乘法下唯一两个幂等实数为0和1。

某一元运算为幂等的时,其作用在任一元素两次后会和其作用一次的结果相同。例如,高斯符号便是幂等的。

扩展资料:

幂等运算也可以在布林代数内找到。逻辑和与逻辑或便都是幂等运算。

在线性代数里,投射是幂等的。亦即,每一将向量投射至一子空间V(不需正交)上的线性算子,都是幂等的。

一幂等半环为其加法(非乘法)为幂等的半环。

幂等的定义

在数学里,幂等有两种主要的定义。
在某二元运算下,幂等元素是指被自己重复运算(或对于函数是为复合)的结果等于它自己的元素。例如,乘法下唯一两个幂等实数为0和1。
某一元运算为幂等的时,其作用在任一元素两次后会和其作用一次的结果相同。例如,高斯符号便是幂等的。
一元运算的定义是二元运算定义的特例 设S为一具有作用于其自身的二元运算的集合,则S的元素s称为幂等的(相对于*)当
s *s = s.
特别的是,任一单位元都是幂等的。若S的所有元素都是幂等的话,则其二元运算*被称做是幂等的。例如,联集和交集的运算便都是幂等的。 设f为一由X映射至X的一元运算,则f为幂等的,当对于所有在X内的x,
f(f(x)) = f(x).
特别的是,恒等函数一定是幂等的,且任一常数函数也都是幂等的。
注意当考虑一由X至X的所有函数所组成的集合S时。在f在一元运算下为幂等的若且唯若在二元运算下,f相对于其复合运算(标记为o)会是幂等的。这可以写成f o f = f。

离散数学 什么是幂等元

幂等元是满足a^n=a的元素。 例如,单位元e,就是一种特殊的幂等元

一元运算的二元运算的单位元、零元和元素的逆元

设为集合S上的二元运算。
(1) 若 ∃ ∈ S (或 ∃ ∈ S ), 使得对 ∀ x ∈ S 都有
x = x ( 或 x=x )
则称是 S中关于运算⌈的 左单位元 ( 称 为S中关于运算⌈的 右单位元 )。
如果 e ∈ S关于运算⌈既是左单位元又是右单位元, 则称为 单位元 或 幺元 。
(2) 若 ∃ θ l ∈ S (或 ∃ θ r ∈ S), 使得对∀ x ∈ S 都有
θ l x = θ l ( 或 x θ r = θ r )
则称 θ l 是 S中关于运算 的 左零元 (称 θ r 是 S中关于运算 的 右零元 )。若 θ ∈ S关于运算 既是左零元又是右零元, 则称它是S中关于运算 的 零元 。
(3) 设e ∈ S是运算 的单位元, x ∈ S。若 $ ∈ S (或 $ ∈ S), 使得
i x = e (或 x =e )
则称 是在运算 下元素x的 左逆元 (称 是在运算 下元素 x 的 右逆元 )。
若 y ∈ S既是x 的左逆元又是x 的右逆元, 则称 y是x 在运算 下的 逆元 。存在逆元的元素称为可逆的。
注1
♥ 在数集 N, Z, Q, R上,0是加法的单位元,1是乘法的单位元;
♥ 在 n阶实矩阵集合M n(R)上,全0的n阶矩阵是矩阵加法的单位元, n 阶单位矩阵是矩阵乘法的单位元;
♥ 在幂集P(S)上, F 是∪运算的单位元 , 全集S是∩运算的单位元, F 也是对称差运算 ⊕ 的单位元;
♥ 在上,恒等矩阵 I A 是函数复合运算的单位元。
注2
♥ 在数集N, Z, Q, R上,加法没有零元,0 是乘法的零元;
♥ 在 M n(R)上, 矩阵加法没有零元, 全 0 的 n 阶矩阵是矩阵乘法的零元;
♥ 在P(S)上, 全集 S 是∪运算的零元, F 是∩运算的零元,⊕ 没有零元;
注3
♥ 在自然数集N上,只有0有加法逆元,就是它自己;
♥ 在数集Z,Q,R上, 每个数字x关于加法运算都有逆元, 即它的相反数–x ;
♥ 在数集Q,R上, 每个非零数字x关于乘法运算都有逆元, 即它的倒数 ;
♥ 在集合M n(R)上,每个 n 阶实矩阵 M 关于矩阵加法都有逆元–M; 每个n 阶实可逆矩阵 M 关于矩阵乘法都有逆元 ;
♥ 在P(S)上,关于并运算∪,只有 F 有逆元,就是它自己;
关于交运算∩,只有全集S有逆元,就是它自己。 (1) 设为S上的二元运算。如果在S中关于该运算既存在左单元 又存在右单元 , 则必存在单位元e , 且 = =e。
(2) S上关于运算的单位元是唯一的。
证: (1) 因 是右单位元,故= ;
又因是左单位元,故 = 。从而 = 。
令 e = = , 易见 e 是单位元。
(2) 设e 和e ' 都是 S中关于运算的单位元,则
e=e e ' = e'
可见,单位元是唯一的。 (1) 设为S上的二元运算。如果在S中关于该运算既有左零元 θ l 又有右零元 θ r ,则必存在零元 θ ,且 θ l = θ r = θ .
(2) S上关于运算的零元是唯一的。
证明与上一定理类似,留作练习。 设为S上的二元运算, e 和 θ 分别为该运算的单位元和零元。如果 S 至少有两个元素,则e≠ q .
证:用反证法。假设 e= θ ,则对 ∀x ∈ S,有 x= xe= xθ = θ . 这与 S中
至少有两个元素矛盾。 设为S上的可结合的二元运算,(“可结合”见下文定义),e 为该运算的单位元。 (1) 如果S中一个元素x在该运算下既有左逆元 又有右逆元 ,则它必有逆元 y , 且 = =y;(2) 若 x ∈ S在运算下有逆元,则逆元是唯一的。
证: (1) 由 x = e 和 x =e 得
= e = ( x ) = ( x ) = e = 。
令 y = = , 则易见 y 是 x 的逆元。
(2) 设 y 和 y ' 都是元素 x 在运算 下的逆元,则
y ' = y ' e= y '(x y)=(y ' x) y=e y=y 。
由此可见 x 的逆元是唯一的。
三.二元运算的运算律 (1)设为集合S上的二元运算. 如果对 ∀ x, y ∈ S,都有
xy=yx,
则称运算在S上具有 交换律 ,或称运算在 S上是交换的。
(2) 设为集合 S上的二元运算。如果对 ∀ x , y, z ∈ S, 都有
(x y) z = x (y z)
则称运算在S上具有 结合律 ,或称运算 在S上是结合的。
(3) 设为集合S上的二元运算。如果对 ∀ x ∈ S,都有
x x =x
则称运算 在S上具有 幂等律 ,或称运算 在S上是幂等的。
(4) 设和·是集合S上两个二元运算。如果对 ∀ x , y, z ∈ S,都有
x ·(y z)=(x · y) (x · z) (或都有 (y z) · x=(y · x) (z · x))
则称运算·对运算具有 左分配律 (或 右分配律 )。若·对既有左分配律又具有右分配律,则称·对具有 分配律 。 (1) 设和·是集合S上的两个可交换的二元运算。如果对 ∀ x , y ∈ S,都有
x·(x y)=x,
则称运算·对运算具有吸收律。如果·对具有吸收律,且对·也具有吸收律,则称运算·和在S上是 吸收的 。
(2) 设是集合S上的二元运算,如果对 ∀x , y, z ∈ S,都有
xy=xz ∧ x ≠零元) ⇒ y=z
或都有 (yx=zx ∧x ≠零元) ⇒y=z)
则称运算 在S上具有 左消去律 (或具有 右消去律 )。若运算在S上既具有左消去律又具有右消去律,则称它在S上具有 消去律 。
注1.
常见的二元运算满足交换律,结合律,幂等律和消去律的情况:
♠ & 集合的并和交不满足消去律的例子 :
A={1,3,4,5}, B={1,2,4,5}, C={1,2,3}, D={1,3},
则 A∪C=B∪C={1,2,3,4,5}, 但A≠B;
A∩C=D∩C={1,3}, 但A≠D.
♠ & 函数的复合运算不满足消去律的例子:
注2.
★ 集合 N,Z,Q,R,C上数字的乘法对加法具有分配律;
★ n 阶实矩阵集合 M n(R) 上矩阵的乘法对加法具有分配律;
★ 幂集 P(S)上交和并运算∩与∪是互相可分配的。
注3.
幂集P(S)上的∪与∩运算满足吸收律,即 ∀ A, B ∈ P(S), 有A∪(A∩B)=A, A∩(A∪B)=A。
注4.
设是集合S上的二元运算. 若S中某元素 x 满足xx=x, 则称x为运算⌈的幂等元。显然, 若二元运算在S上具有幂等律, 则S中每个元素都是 运算的幂等元。
例 10.6 对下列二元运算, 指出其运算性质, 并求其单位元、零元和
所有可逆元的逆元。
解: (1) * 运算可交换、可结合, 是幂等的, 不存在零元。因为对 ,x * 1=1 * x=x , 故1是单位元。除1外, 其它元素无逆元, 1 的逆元是它 自己。
(2) ① ∵ 对 ∀x , y ∈ Q, x * y = x+y – xy = y+x – yx = y* x , 故*满足交换律;
② ∵ 对 ∀ x , y, z ∈ Q, 有
(x * y ) * z = (x+y – xy) * z = x+y+z – xy – xz – yz+xyz ,
x * (y * z ) = x * (y+z – yz) = x+y+z – yz – xz – xy+xyz .
可见 * 满足结合律;
③ ∵ 对 2 ∈ Q, 有 2*2=2+2–2 ′ 2=0 1 2, 故*不满足幂等律;
④ ∵ 对 ∀x , y, z ∈ Q 且 x 1 1 (1是零元),有
x*y = x*z ⇒ x+y – xy = x+z – xz ⇒y – z = x(y – z) ⇒y = z。
故满足左消去律, 由于可交换, 故也满足右消去律, 从而*满足消去律;
⑤ 因为对 ∀ x ∈ Q,都有 x*0 = x = 0*x,故 0是*的单位元;
⑥ 因为对 ∀ x ∈ Q,都有 x*1=1=1*x,故 1是*的零元;
⑦ 因为对 ∀ x ∈ Q,欲使 x*y=0 和 y*x=0成立,即
x+y – xy = 0,
解得 ,故每一非零元x都有逆元 。
例 10.7 设A={a, b, c}, A上的二元运算 * ,,· 如表所求。
(1) 说明它们是否满足交换律、结合律、消去律和幂等律。
(2) 求出它们的单位元、零元和所有可逆的逆元。
表格
解: *运算 满足交换律、结合律和消去律 , 不满足幂等律。单位元是a;没有零元;, .
运算 满足交换律、结合律和幂等律 , 不满足消去律,单位元是a,零元是b. 仅仅a 有逆元: .
· 运算 满足交换律、结合律和幂等律 , 不满足交换律和消去律。没有单位元和零元,任何元素都无逆元。


标签:理工学科 数学 幂等 自然科学 学习

大明白知识网 Copyright © 2020-2022 www.wangpan131.com. Some Rights Reserved. 京ICP备11019930号-18